Southern California Mobility Plan

Baruch Feigenbaum
Assistant Director Transportation Policy—Reason
Foundation
California Transportation Commission
March 17, 2016

Overview/Why

- Robert Galvin (former CEO of Motorola) concerned with lack of mobility in major regions
- Concern with negative effects on commerce
- Reason looked at six regions (Los Angeles, Chicago, Atlanta, Miami, Denver, Fort Meyers-Lee County FL)
- Create technically accurate plan while keeping political realities in mind
- Examines entire region not just downtown or one county (Los Angeles, Orange, San Bernardino, Riverside, Ventura Counties)

Mobility Problems

Metric	1982	2014
Delay per Commuter (hours)	50	80
Travel Time Index	1.27	1.43
Gallons Excess Fuel Consumed	75,792	195,491
Percent Commuters Using Transit	5.9%	5.8%
Cost of Congestion	\$12.6B	\$13.3B

Yes But.....

- Vehicle Miles Travel is decreasing
 - Per capita VMT is flat
 - Increase in population equates to increase in VMT
 - Overall increases in VMT especially arterial particularly over the last two years
- Los Angeles has robust transit network
 - Actual per capita transit usage has been declining for 35 years
 - Problem is network does not take many potential riders where they need to go

Focus: SCAG Plan

- Many plans, more relevant is SCAG plan
- Technically sound, pragmatic
- Uses \$305B in existing resources and relies on \$220B in new funds which may not be realistic
- Hamstrung by state laws particularly environmental
 - Desire to reduce greenhouse gas emissions, prevent sprawl
 - Both can be addressed more effectively with pricing
- Hamstrung by political concerns
 - City A gets light-rail line, City B must get light-rail line
 - Local interests exerting undue pressure over a regional plan

Result: Expressway Travel Speed Differences Between 2007 and 2035

Reason Southern California Mobility Plan Factors

- For region: Interconnectivity
 - Traveling from one city/one county to another
- For region: Realistic revenue potential
 - No reliance on unexpected revenue
- For region: Mobility
 - This is a transportation plan
 - Reduces GHGs and leads to economic growth
- For roadways: Induced Demand
 - In growing areas widened non-priced roadways become congested in 2-5 years
 - Good for economic development but bad for mobility
- For transit: Reduced Trip Times, Reduced Transfers
 - Two major reasons commuters do not take transit

Increasing Expressway Mobility: Express Lanes Network

- Concept: A network of lanes that offers a reliable trip time for drivers and transit users
- 1-3 lanes in each direction on almost every Southern California expressway
- Involves conversions from High Occupancy Vehicle (HOV) lanes to High Occupancy Toll (HOT) lanes and new priced capacity
- Cost for Express Toll Lanes/Truck Toll Lanes \$105B
- Cost for Express Toll Lane Interchanges \$24B

Express Lane Network Map

Increasing Arterial Mobility Managed Arterials Network

- Concept: A network of arterials (surface streets) that offers a reliable trip time for drivers and transit users
- 559 tolled grade separations (underpasses or overpasses) on 18 major arterials
- Tolls range from \$0.15-\$0.25; optional to all vehicles and free for buses and vanpools
- Involves limited new capacity and some restriping (parking lanes to travel lanes)
- Cost for grade separations is \$33.7B
- Costs for associated improvements (arterial widenings and new alignments) \$19.4B

Managed Arterials Network

Filling in Gaps in the Network: Toll Expressways/Tunnels

- Several Missing Links in Southern California Expressway Network
- Original planned as surface expressways not well received
 - Bulldoze homes
 - Decrease property values
 - Destroy communities
- Replaced with environmentally-friendly tunnels
- Increases mobility throughout network and helps high growth areas (High Desert Corridor, Glendale-Palmdale Tunnel)
- Total of 6 expressways/tunnels
- Total cost \$97.2B

Eliminating Bottlenecks: Expressway-Expressway, Expressway-Arterial

- Many interchanges date from 1940's-1960's
 - Obsolete for today's traffic volumes
 - Unsafe for certain trucks
 - Cause many bottlenecks
- Cost-effective solution: Make ramp, collectordistributor, merging lane changes to worst interchanges in region
- Most expressway-arterial interchanges were not designed for today's traffic volumes
 - Major arterials/managed arterials need delay reductions
 - Grade separations of main travel lanes
 - Extended turn lanes
 - Land use improvements cyclists/walkers
- Will not end congestion, but provide costeffective improvements

I-10 at I-110

I-10 at I-405

I-5, I-10, US 101 SR 60 South

I-5, I-10, US 101, SR 60 North

SR 110 at US 101

I-405 at US 101

I-5 at I-605

I-5 at I-710

I-10 at I-605

I-605 at SR 60

I-5 at SR 55

Map of Improved Interchanges

Transit Improvements (Part 1)

- Creates bus-based transit network that can be implemented over the lifetime of plan
- Rail is very popular but region has significant rail investments and new projects are very costly
- Proposed bus network uses local bus, limited-stop bus, express bus and bus rapid transit (BRT) on existing roadway infrastructure
 - Local bus: traditional service with headways 5-15 minutes
 - Limited-stop bus: rush hour service that skips stops to provide faster trip
 - Express bus: enhanced service (wi-fi, food for sale, electric outlets, guaranteed seats) between two communities that uses expressways or primary arterials
 - BRT: enhanced service (wi-fi, food for sale, electric outlets, guaranteed seats) plus 6 features:
 - Running ways that give buses priority
 - Unique station design
 - Larger vehicles
 - Electric/SMART cards off-board fare collection
 - Priority traffic signals
 - More frequent service

Transit Improvements (Part 2)

- BRT can include 3 other components to improve services
 - Land use/zoning changes
 - Elevated boarding platforms
 - Electronic/Next-bus signs
- BRT has two service levels: heavy and light
 - Heavy has dedicated lane for 50% of service
 - Ex) Orange Line
 - Light uses semi-dedicated lane with priority signaling and turnouts
 - Ex) Metro Rapid
 - For most region BRT light is better solution. BRT heavy corridors with 20+ buses per hour
- Our plan used express lanes on expressway and managed arterials to provide semi-dedicated running ways
 - Express bus operates in express lanes, BRT on managed arterials

Express Bus Network Map

Arterial BRT Network

Operations Management

- Features to improve traffic operations
 - Dynamic signal synchronization
 - Adjust traffic signals to traffic conditions
 - TTI: 91% on arterials but numbers on local roads much lower
 - Dynamic ramp metering
 - Varies length of green on-ramp signal
 - Static queue warnings
 - Signs that warn of slow traffic ahead
 - Speed harmonization
 - Variable speed limits
 - Hard shoulder running
 - Converts shoulder to travel lanes
 - Uses shoulders during rush hour
 - Junction control
 - Closes lane ahead of accident/event

Operations Management Helps Transit

- Transit signal priority
 - Early green or extended green for transit vehicles
 - Transit vehicles have priority over automobiles
 - Buses use right turn lane to avoid backups
- Dynamic ramp metering
 - Provides priority signal for buses
- Junction control
 - Allows transit vehicles to use certain roads passenger cars cannot

Reason Plan

- Includes many of the projects of the SCAG plan
- Uses tolling to provide more funding without tax hikes than SCAG's plan provides with \$220B in tax hikes
- Includes full funding for bike lanes and sidewalks
- Includes extra funding for maintenance and operations of roads and transit
- Includes debt service and contingency

Reason Plan Details

Component	Cost	Component	Cost
New expressways/tunnels	\$97.2B	Toll contingency	\$32.5B
Expressway interchanges	\$2.9B	Transit capital	\$42.7B
Arterial/local roads capital	\$74B	Roadway O&M	\$90.5B
Arterial interchanges	\$15.6B	Transit O&M	\$102.4B
Express toll lanes	\$105B	Operations Man./ITS	\$10B
Express TL interchanges	\$24.0B	Active Transportation	\$7.7B
Managed arterial widenings	\$16.5B	TDM	\$5.2B
M.A. grade separations	\$33.7B	Debt Service	\$50.1B
M.A. new alignments	\$2.9B	Total	\$714.1B

Next Steps: Implementation

- Get ideas included in long-range plans, implemented by L.A. Metro, Caltrans
- Provide feedback on most promising corridors
- Identify other folks to educate
- Be a champion
- Communicate/discuss with other elected officials

